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Abstract

AI systems are running out of data, but not because the data doesn’t exist. On the
contrary, we estimate that 6 orders of magnitude more data exists, but data owners
are unable or unwilling to relinquish it for AI training. We diagnose the problem as
one of use bundling. A data owner cannot choose which AI predictions they wish
to support — and which ones to decline to support (e.g. violations of their privacy,
copyright, legal constraints, intellectual property, etc.). Instead, data owners must
decide whether to help every AI prediction an AI model might generate in the
future — or none of them. The vast majority of data owners opt for the latter.
However, if training data owners could enforce which AI predictions they wanted
to support and which they declined to support (perhaps on an ongoing basis), we
argue that most would participate in at least some predictions. That is to say, an
AI user could call upon 6 orders of magnitude more data in the world to support
their AI predictions, and AI’s present data scarcity problem would be averted. This
position paper argues that existing techniques can offer precisely this capability:
attribution-based control.

1 Introduction

The future of AI hinges on the acquisition of more high-quality data, as reinforced by scaling laws
[Kaplan et al., 2020, Hernandez et al., 2022, Muennighoff et al., 2025]. While recent advances in
large language models (LLMs) have been fueled by massive publicly available datasets, this approach
is reaching its limits [Villalobos et al., 2024]. At the same time, frontier models like GPT-4 [OpenAI
et al., 2024], LLaMA-3 [Grattafiori et al., 2024], and Qwen [Qwen et al., 2025] are using less than
0.03% of the data in existence because such non-public datasets remain largely inaccessible.

We argue that this is not a matter of data scarcity, but a design failure. Non-public data remains
unused largely due to governance and attribution challenges. The dominant AI paradigm relies on two
operations that undermine data governance: copying and addition. Training requires duplicating data
into centralized datasets, stripping contributors of control—a problem known as the copy problem
Trask et al. [2024]. Simultaneously, deep learning blends inputs via feature mixing and parameter
updates, eliminating traceability—creating the addition problem. These mechanisms erase control
and attribution, posing irreversible risks to data owners such as privacy, legal exposure, or loss of IP;
ultimately excluding sensitive, high-value data from AI systems.

We claim that solving the data bottleneck requires rethinking the core assumptions of AI systems
to enable attribution-based control (ABC)—the ability for data owners to retain fine-grained,
enforceable control over how their data is used in both training and inference and the ability
for users of AI to decide which upstream sources they wish to utilize. However, ABC is not
achievable under either of the extreme ends of the current governance paradigms, private centralized
models or their opposite, open-source weights; as both open/closed weight paradigms offer model
holders unilateral control over model use.
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Figure 1: The Scale Gap: Annual human-generated text (≈ 55Q tokens) to the largest dataset used
for AI training (≈ 20T tokens).

We survey a set of emerging technical mechanisms that pave the way toward ABC. Advances in
differential privacy [Dwork, 2006], federated learning [McMahan et al., 2023], secure computation
[Zhou et al., 2024], and retrieval-augmented architectures [Borgeaud et al., 2022, Izacard et al., 2022]
show early promise in enabling data use without full disclosure. Moreover, architectures like PATE
[Papernot et al., 2018] and RETRO [Borgeaud et al., 2022] suggest that it is possible to decouple
parameter sharing from data sharing, enabling attribution to be preserved across systems.

Building on these ideas, we illustrate the path towards a networked approach for AI where models do
not fully memorize data in centralized weights, but can access and query distributed, live, public and
private data sources (and weights derived from them). This live approach allows data owners to opt
in or out of specific predictions, enforces usage restrictions cryptographically, and enables dynamic
governance across the AI supply chain. We argue that AI systems that implement attribution-based
control can unlock the vast, underutilized data resources of the world; data that can power safer, more
robust, and more equitable AI systems.

2 Barriers to further data access

The scale of non-accessible data Frontier models [Grattafiori et al., 2024, Qwen et al., 2025] have
been trained on datasets of approximately 5–20 trillion tokens. Using RedPajama’s token-to-byte
estimate [Weber et al., 2024], Qwen2.5-7B’s 18 trillion tokens require 90TB of storage [Qwen et al.,
2025]. Yet this is minuscule compared to the volume of human-generated text. Cummins [2024]
estimate that over 1850 trillion tokens are created daily via email and instant messages alone. In total,
humans produce about 150 trillion tokens per day—over 55 quadrillion annually—roughly 3,500
times more than the largest training sets to date. This is still only a fraction of the global digital corpus,
projected to reach 180 zettabytes by 2025 [Mider, 2024, Taylor, 2024]. By contrast, today’s usable
open datasets—Common Crawl ( 450TB, Wenzek et al. [2019]) and the Internet Archive’s Wayback
Machine1 ( 100PB, [Kahle, 2024])—are orders of magnitude smaller. This raises a fundamental
question: why is so much valuable data left untapped by current AI systems?

Risks & barriers that silo data There are significant barriers preventing data owners from con-
tributing their data to AI systems, primarily due to the risks associated with granting access. Such
risks include legal risks around privacy breaches, infringement of intellectual property rights, reg-
ulatory liability or downstream data misuse [Wang et al., 2024, Trask et al., 2024]. For example,
medical institutions might wish to control who gets access to patient information and under what
conditions, to adjust for privacy risk [Malin B, 2018]. Certain biological datasets carry inherent
dual-use potential, requiring strict access controls to prevent both deliberate misappropriation and
unintended harmful applications [Sandbrink, 2023]. Moreover, Longpre et al. [2024b] shows that
access to creative works is in decline due to restrictive or unclear licenses, in an attempt to defend
IP rights. This is a common pattern - Youssef et al. [2023] notes that many of the barriers to unlock
medical data can be reduced down to two substantive concerns: maintaining attribution and control.

Today’s AI systems fail to enable robust attribution [Huang et al., 2025]. In addition, the black-box
usage of data at training and inference time prohibits data owners from observing, enforcing, and
validating whether their data preferences (i.e., licenses, data policies) are appropriately applied [Katzy
et al., 2024]. Currently, data owners must rely on and place their trust in AI operators to enforce
blanket usage policies. They can only attempt to validate the efficacy of such enforcement through
techniques like watermarking [Wei et al., 2024] or various black-box membership-inference attacks

1https://web.archive.org/
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[Hu et al., 2022], which are often error-prone. In this current paradigm, data owners do not have
enforceable, direct control over how an AI system uses their data (i.e. which prompts an AI model
is allowed to respond to using information learned from their data) because once data owners grant
access to a copy of their data to an AI operator, the AI operator then has full control over the use of
that data in training or prediction. This presents two core problems for data owners:

• They cannot observe or approve of outputs involving their data.
• They cannot withdraw support for misaligned uses.

We argue that the lack of attribution-based control in both open-source and closed-source AI systems
reinforces barriers for data owners, keeping much of their data inaccessible.

Lack of economic incentives In addition to preserving the barriers, the lack of attribution fails to
motivate data owners to participate. In particular, as AI capabilities reach human-level performance
on specific tasks [OpenAI et al., 2024], the fundamental premise of our existing intellectual property
(IP) regime and its traditional profit mechanism are being disrupted. Creative workers have described
this challenge as a “double bind”: the desire to embrace AI as a productivity amplifier, and the
simultaneous fear of the same AI replacing them [Harvard Law Review, 2025, Tang et al., 2025]. In
one such example, Hollywood writers went on strike, refusing to contribute their IP to AI systems out
of fear of being replaced [The New York Times Editorial Board, 2023]. Publishers have also adapted
a more defensive stance by specifying new restrictive rules to their content via robots.txt [Longpre
et al., 2024b], and enforcing their rights through lawsuits [The New York Times Company, 2023].
These communities repeatedly surface a shared fear regarding their participation in AI systems: data
owners cannot exercise attribution-based control.

Broken AI supply chain AI systems are becoming primary interfaces for information access
[Zhang, 2024], distancing users from data owners [Arriagada and Ibáñez, 2020]. This disconnect
breaks feedback and engagement loops which are crucial for improving content quality, and affects
end-users who are exposed more to hallucinations or disinformation [Dziri et al., 2022, Rashkin et al.,
2021, Vaccari and Chadwick, 2020]. Unlike journals or search engines that cite sources [Zuccon et al.,
2023], AI systems often omit attribution. For example, a user asking about a medical condition might
want to choose only peer-reviewed sources from scientific journals, excluding mentions on social
media or public chat rooms [Gravel et al., 2023, Bhattacharyya et al., 2023]. Researchers whose
work trains these models lose visibility and credit, undermining academic norms where citations
signal value [Devriendt et al., 2021]. Without attribution, users doubt its authenticity, data owners
lose incentives, and AI output declines—widening the gap between creators and their audiences.

3 The limitations of today’s AI systems

In his work, Trask et al. [2024] explores the cause why such barriers persist for data owners and
identifies the underlying problems that prohibit control and collaboration: information cannot be
controlled once it is shared or bundled, introducing the copy problem. We investigate how this
framework can be extended to today’s AI systems and their lack of attribution and control.

3.1 The lack of attribution: the addition problem

The problem of attribution starts with data collection and processing, where source information is
often not preserved [Longpre et al., 2023]. While better curation efforts can improve this premise, AI
systems would still fail to maintain individual attribution. The reason emerges from deep learning’s
foundational premise: algorithms should learn everything from scratch through layers of (largely)
unrestricted feature mixing on raw data [Goodfellow, 2017]. The root cause for the loss of traceability
is addition within deep learning systems. For example, consider the source data to be 1 and 6, and
observe the following sums:

1 + 6 = 7;

2 + 5 = 7

Addition obscures source identities by irreversibly entangling inputs. It is pervasive in training—used
in feature merging, gradient aggregation, and weight updates—dispersing information across weights
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in complex patterns [Le et al., 2012]. Consequently, deep learning techniques erase attribution
information during feature merging, gradient aggregation, and weight-updates. And attempting to
track provenance across these operations becomes infeasible due to exponential growth in attribution
paths, up to Ω(w ∗ n)t for w weights, n examples, and t steps, making brute-force tracing intractable.

Existing research efforts focus on overcoming this problem by tracing predictions back to training data
through the use of influence function approximations [Koh and Liang, 2020, Schioppa et al., 2021],
TracIn [Pruthi et al., 2020], or the removal of influential data points through machine unlearning
[Nguyen et al., 2024]. However, they fundamentally struggle because they attempt to recover
inforamtion which is already lost through addition. Consequentnly, influence functions and machine
unlearning remain unsolved challenges in the literature [Nguyen et al., 2023, K and Søgaard, 2021].

3.2 The lack of control: the copy problem

When Party A gives information to Party B, Party A loses control over all future uses of that piece
of information [Trask et al., 2024]. AI systems remain bound by this same fundamental limitation:
to help train an AI model, data owners need to give a copy of their data to AI model operators,
relinquishing control over how their data might be used or distributed after it is synthesized into the
model. Similarly, when a model owner gives their model to someone else, they lose control over how
that model might be used going forward.

Today, AI systems are distributed through two main paradigms: open-source and closed-source. The
dichotomy between these two paradigms has become a proxy for broader concerns around privacy,
disinformation, copyright, safety, bias, and alignment. However, we argue that while both prioritize
specific needs of data owners, neither facilitates sufficient control or transparency for data owners:

Privacy and data rights: Privacy is one of the main barriers for data owners: closed-source propo-
nents show that centralized control enables better privacy protection through careful data handling
and access controls [Deng et al., 2024], while open-source proponents counter that transparency
allows public verification of privacy measures [Hintersdorf et al., 2025, Wang et al., 2024]. However,
as private data remains largely inaccessible, this fails to address the needs of data owners: they cannot
control how their information is used and enforce their own boundaries between proper and improper
use, as the control is delegated to external decision-makers or lost by design.

Copyright and intellectual property: Both closed and open-source models can uphold data owners’
IP rights through licensing and usage restrictions. However, without any enforcing mechanism,
this becomes a problem of trust and transparency: data owners need to trust such models follow
compliance without a verification mechanism [Cen and Alur, 2024]. While open-source models
distribute their models under highly permissive, unrestricted licenses that benefit the AI community,
such licenses sometimes contradict the preferences of data owners, which are so vast and varied
that a single license may not be able to fully express user desires [Longpre et al., 2024a]. These
insufficiencies stem from delegating control or doing so without appropriate verifiable mechanisms.

Safety and misuse prevention: Closed-source proponents advocate that centralized oversight
prevents harms [Deng et al., 2024], in contrast with open-source’s claim that collective scrutiny better
identifies risks [Hintersdorf et al., 2025]. In both cases, data owners cannot intervene if their data
contributes to harmful outcomes to withdraw support: for closed-source, they trust AI operators for
adjustments, while open-source AI’s unrestricted distribution disables any post-hoc intervention.

Bias and representation: Closed-source teams employ careful curation to prevent bias [OpenAI
et al., 2024]. Open-source teams suggest community oversight promotes fair representation and
transparency [Eiras et al., 2024]. While complementary, neither open or closed source paradigms
empower affected communities to control how their perspectives inform predictions. Furthermore,
neither paradigm empowers AI end-users to decide on which sources they trust. Instead, both
paradigms delegate control over bias and representation to whomever trains an AI model.
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4 Enable attribution through concatenation and separability

Addition erases source attribution. We previously showed how this undermines traceability via feature
mixing in deep learning. In this section, we present a simple alternative to addition - concatenation.
Through various forms of concatenation, undesired additions can be replaced while preserving the
dense information that is critical for AI systems to build its reasoning abilities.

4.1 Concatenation along natural boundaries

Concatenation, as opposed to addition, carries some properties that are particularly of interest to us:
it preserves the source information while still allowing information to be combined later.

Figure 2: Illustrative example between addition and concatenation.

Notice how in Fig. 2, concatenation preserves source information, numbers ”1” and ”6”, but how
their identity is destroyed when addition takes place. This erasure is the mechanism that removes
attribution information within deep neural networks. However, we pose the following question: Can
concatenation reduce this problem in practice within deep learning systems?

Deep learning’s central hypothesis would suggest we cannot. Addition is needed to densely mix
features in order to learn the powerful correlations and representations that give deep learning its
predictive capability. Presumably, deep learning maps multiple distinct-yet-related concepts into a
shared feature (e.g., an image classifier combines features for detecting ears and fur to model specific
animals) [Bau et al., 2017]. Yet, not all concepts require that representation power: certain concepts
are densely intertwined, while others are near-orthogonal.

Certain information patterns (such as grammar rules, logical operations, morphological patterns,
edges in images) appear across high percentages of data points. For these near-ubiquitous features,
addition-based mixing is often suitable, and attribution is less critical since they act as shared
computational tools (i.e. nobody owns English grammar or the principles of arithmetic — it is
certainly in the commons). In contrast, sparse information—such as the capital of France, chess
rules, or the proprietary manufacturing process of a specific company—tends to be source-specific
and context-dependent. As noted by Chomsky [Chomsky, 1969], while common structures shape
expression, the knowledge conveyed is often naturally partitioned by topic and source.

Assuming this is true, it means that a section of a neural network could be made sparse, namely the
part which stores less common concepts (specific facts, domain expertise, semantic information, etc.),
while a section needs to remain dense to store and synthesize concepts which are ubiquitous across
a statistical distribution (logic, reasoning, grammar, etc.). This sparsity could drive attribution if
addition is at least partially replaced with concatenation. The key question becomes: how could one
train a neural network which successfully partitions information into sparse and dense sections?

4.2 Separable model architecture

To reduce undesired additions and replace them with concatenation, we need to achieve a successful
partitioning of information into sparse and dense sections. To provide evidence that this is possible,
we look into two important prior works: differential privacy and retrieval-based architectures.

Differential Privacy A technique inspired from the privacy space, differential privacy [Dwork,
2006], could provide a principled way to measure and control which features benefit from dense
mixing versus sparse representation. Existing rich literature on differential privacy mechanisms, such
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as noise addition, gradient clipping or sensitivity bounds [Abadi et al., 2016], naturally filter out
information unique to specific sources.

We suggest that the same mechanisms can be used to calibrate for the opposite effect that privacy
erases: attribution. This is possible by leveraging its generic ability to systematically identify and
filter out information that appears infrequently across many partitions of information which are being
aggregated [Dwork, 2006]. We suggest that this ability could be applied to partitions of training data
used in neural networks. A key architectural insight is that the model may learn correlations from
information that appears consistently across sources and passes through privacy mechanisms, while
source-specific knowledge is naturally isolated outside of the dense features.

Retrieval-based architectures Recent work, such as RETRO and ATLAS [Borgeaud et al., 2022,
Izacard et al., 2022], provides initial evidence that knowledge naturally separates into general
computational patterns: for instance, we can note how the Transformer reads its source-specific
information from a database of vector embeddings that is hosted outside of the model’s weights.
In particular, these works show that memory can be outsourced and replaced by an external non-
parametric knowledge source by employing a retrieval-augmented architecture without loss in
performance.

Figure 3: Example illustration of how we can separate the common and source-specific knowledge
during training through differential privacy (upper part) and how this extends to the usage of the
sparse, source-specific knowledge through retrieval mechanisms during inference (lower part).

These early pointers suggest that data owners might get a new lever of control through the tunable
nature of the differential privacy mechanisms, as well as opt-in/opt-out ability enabled by the source-
separation implemented by such model architectures (Fig. 3). However, we recognize that this
framework builds on top of the following assumptions that will require empirical validation:

1. General Separability Hypothesis: Neural networks can separate common vs. source-
specific information using privacy filters.

2. Source-specific Separability Hypothesis: Sparse model sections can be further partitioned
by source, over which data providers can exercise their control.

3. Source-specific Synthesizability Hypothesis: Dense sections from different sources can
be combined efficiently.

We consider these assumptions a requirement to technically enforce attribution and control. However,
an immediate concern alongside these hypothesis might be Could a separable model architecture
achieve similar performance as traditional AI models?.

4.3 Performance and attribution trade-offs

To understand the possible performance constraints of such a system, we investigate how this
compares with existing model architectures deployed widely in the real-world and their existing
support for attribution and control:
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1. Traditional deep learning systems achieve state-of-the-art performance through unre-
stricted parameter sharing. On MNIST, non-private models reach 98.3% accuracy, while an
identically parameterized model with differential privacy drops to 90% [Abadi et al., 2016].
However, this has another fundamental cost: attribution clarity is lost.

2. Federated systems maintain clear attribution boundaries by keeping data within its original
institutional siloes. While this does not come with cost when data is IID, the ability to
preserve attribution comes with a measurable cost for non-IID data: MNIST accuracy drops
from 98.69% to 96.29% [Zhao et al., 2018] - an 2.4% degradation from simply partitioning
non-IID data, training separate models, and averaging them. This surfaces a tension between
attribution boundaries and the need to learn cross-source patterns.

3. Pure memory-based approaches like k-NN [Cunningham and Delany, 2021] provide
perfect attribution by directly linking predictions to source examples. While these systems
can achieve high accuracy on their training distribution through exact matching, they
fundamentally cannot generalize beyond the patterns explicitly present in their memory
banks despite achieving 97.2% accuracy [Grover and Toghi, 2019].

These examples suggest an unavoidable tradeoff between model performance, attribution, and
generalization ability. If these tradeoffs are fundamental limits rather than engineering challenges,
this would permanently constrain AI’s access to siloed data. However, prior work [Borgeaud et al.,
2022, Izacard et al., 2022] provides further evidence: RETRO (7.5B parameters) matches GPT3’s
(175B parameters) performance, while using 25x fewer parameters. This suggests that these properties
can be achieved at the same: dense-level performance, dense-level generalization and memory-level
attribution. Similar findings span other separable model architectures that employ various merging
mechanisms, such as PATE, Federated RAG or Git Re-Basin.

PATE (Private Aggregation of Teacher Ensembles) [Papernot et al., 2018] achieves 98.5% accuracy
on MNIST with differential privacy, close to the non-private 99.2%, and uniquely supports source
attribution via individual teachers—offering stronger guarantees than RETRO or ATLAS. Federated
RAG [Hou et al., 2025] also boosts both attribution and performance. Git Re-Basin [Ainsworth et al.,
2023] further shows models trained independently on similar distributions can be merged without
accuracy loss, challenging the need for joint training.

Together, these results point to a systematic advantage: architectures with explicit information paths
can preserve attribution and enable transparency without sacrificing performance.

5 Enable control through structured transparency

The prior section illustrates how different architectures can preserve attribution while retaining
performance. However, data owners still need to trust model operators that they will comply with
their preferences (e.g., licenses). Even if a model preserves its attribution paths, it is still unilaterally
controlled by whoever possesses a copy of the model. This creates a trust barrier that blocks the
potential of such architectures.

We refer to the framework of structured transparency and a variety of recently proposed technologies
from cryptography and distributed systems to address such problems:

1. Input Privacy: Preserve control and privacy during computation Federated learning
[Gabrielli et al., 2023] addresses the copy problem by moving computation to the data,
enabling models to train or query without centralizing information. Each data source could
run a web server they control, deciding case-by-case whether to contribute. Complementary
methods such as secure enclaves with attestation [Costan and Devadas, 2016], homomorphic
encryption via key-value stores [Cheon et al., 2017], and secure multi-party computation
(SMPC) [Xiong et al., 2021, Wagh et al., 2018] further protect data by ensuring it remains en-
crypted or partitioned throughout the computation process, preventing unwanted duplication
or exposure.

2. Output Privacy: Avoid private data disclosure Whilst the above can ensure full privacy of
the data during computation, the AI prediction may be vulnerable to reverse engineering
attacks. To preserve output privacy, differential privacy is a great candidate for both training
[Dwork, 2006], and retrieval [Koga et al., 2025].
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3. Input + Output Verification: Verify authenticity & provenance If the above are properly
implemented, an AI user is forced to rely upon vast collections of information they cannot
see. To ensure information is real and verify its provenance, cryptographic techniques such
as zero-knowledge proofs [Lavin et al., 2024] and attestation chains [Costan and Devadas,
2016] let data sources prove properties (e.g., peer review) without revealing content. Verified
computations [Woodcock et al., 2024] attest that inputs stay unchanged, while public-key
signatures let individuals validate claims (e.g., a journalist signing their article).

4. Flow governance The last challenge is ensuring that despite the large scale of the com-
putation - between AI users and a large number of active sources - the right controls are
distributed to the right parties. If such methods are successful, methods like SMPC can
provide control which is both distributed and group-enforceable through techniques like
additive secret sharing [Xiong et al., 2021].

Together, these five guarantees - input/output privacy, input/output verification and flow governance -
lay the structured transparency foundation that can unlock ABC-enabled AI.

6 ABC-enabled AI: a new paradigm for distribution

To reduce the barriers that prohibit data owners to participate in AI and reinstate their incentives, we
contend that it is necessary for AI models’ to possess attribution-based control (ABC) (Fig. 4):

1. AI users control which data sources they rely upon for prediction

2. Data sources control which predictions they would like to support or decline

ABC implies that AI models’s knowledge need to be partitioned by source, otherwise sources cannot
independently exercise their control, neither during training or inference. We showed earlier that such
architectures not only are possible, but there is evidence to show it can operate at scale. However, for
such control to be possible, we need to challenge the fundamental assumption that AI systems must
exist as copyable files - as existing paradigms (open vs closed) fail to enable the necessary control
and transparency.

We propose the idea that, if ABC-enabled AI operated on a live, networked architecture, we can
overcome this core trade-off between trust and control. Assuming each data source is queried or
used directly from its original source, over a network, we prevent copying and can rely on structured
transparency’s guarantees to enable both visibility into how systems operate and precise control
over how information is used. This resolves the false choice between open and closed source AI by
creating a third option: network-sourced AI systems that are simultaneously transparent (through
verification) and controlled (through cryptography), by implementing attribution-based control.

We believe this paradigm shift has far-reaching implications: if data owners can specify their
enforceable preferences on an ongoing basis to control for privacy violations, copyright, legal
constraints or IP, they could choose to participate in AI, unlocking six orders of magnitude more data.

Figure 4: Visual comparison between open/closed-source AI systems and ABC-enabled AI.
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7 Alternative views

The problem of accessing more data is pervasive across the industry. We recognize three alternative
views that are most commonly encountered in the industry:

Centralized control. As discussed above, existing research efforts to address privacy and control are
still concentrated on model architectures that are unilaterally controlled, with data owners’ preferences
being respected through AI owner benevolence. Without being enforceable, compliance is imperfect,
with various precedents surfacing into the public space, including lawsuits [The New York Times
Company, 2023] or outrageous findings [Wang et al., 2024]. We recognize that this approach has
been successful in acquiring more data and extensive work has been deployed in creating effective
guardrails and safety mechanisms for such models. However, these are still subject to privacy and
security concerns [Wang et al., 2024] and while economic incentives are manually created for each
data owner that contributes its data through direct licensing, we argue that this creates a barrier for
the open advancement of AI and cannot be a scalable approach to capture the 6+ orders of magnitude
of data that is currently siloed.

Use of exclusively public and synthetic data Existing efforts are being concentrated on generating
synthetic data to overcome the scarcity of training data [Bauer et al., 2024], given to the privacy issues
and expensive acquisitions. Additionally, there are complementary efforts to identify and correct
licensing issues with public data, including lack of specified licenses or asymmetries between one’s
licenses and robots.txt [Longpre et al., 2024a], which are of great benefit to the entire AI community.
However, this solution is temporary, as highlighted by Villalobos et al. [2024], because the existing
LLM development trends will likely exhaust the public human data available in a short timeline.
Prior work presents limitations of synthetic data, such as error amplification and diversity [Chen
et al., 2024, Shumailov et al., 2024], but we find this line of work complementary with the efforts
of unlocking data siloes, where synthetic data generation can be a viable solution in the technical
framework of structured transparency.

Infrastructure-based data sharing Another emerging approach seeks to address access barriers by
standardizing secure data-sharing infrastructure, often via federated learning frameworks [McMahan
et al., 2023, Gabrielli et al., 2023] or data trusts. These systems aim to enable computation without
raw data transfer by keeping data at rest and moving models to the data. This model can preserve
privacy and offer a degree of control, particularly for institutional stakeholders. However, adoption
remains limited due to high technical complexity, limited interoperability, and the need for strong
governance frameworks to ensure compliance and fairness. Furthermore, these systems prioritize
control during training, but ultimately delegate control of the aggregated model to a central party,
falling down the path of unilateral control as data owners lose the ability to say which AI predictions
they would like to support. Without attribution-based control, such systems still preserve the barriers
for data owners, albeit in a slightly more distributed form.

8 Conclusion

At the heart of today’s AI challenges—copyright, privacy, misattribution, disinfonrmation, and data
scarcity—lies a deeper structural flaw: the absence of attribution-based control (ABC). Our current
systems either centralize control behind corporate walls or abandon it entirely through open release.
Both models fail to empower those who matter most: data owners and end users.

We argue for a new path. By replacing additive architectures with separable, attribution-preserving
designs, and enforcing control through cryptographic guarantees (not trust) we unlock a new paradigm:
AI as a live, distributed network. Not just a neural newtork, but a communication network — an
interconnected network of neural networks. ABC transforms the acquisition of training data from a
one-time extractive act into a sustainable, collaborative flow.

If adopted, we hold that this shift could unlock six orders of magnitude more data, enable safer and
more aligned AI systems, and repair the broken supply chain between source and users. Attribution-
based control is not just a technical fix—it may be the only sustainable path forward. As data grows
more valuable and its misuse more consequential, enabling ABC becomes increasingly urgent. We
believe the research community must begin treating attribution-based control as a first-class design
constraint—not an afterthought. Building this foundation now is essential to ensuring the next
generation of AI is collaborative, transparent, and aligned by design.
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